Search results for "Weak convergence"
showing 10 items of 14 documents
Convergence rate of the Euler scheme for diffusion processes
2006
Convergence rate of a relaxed inertial proximal algorithm for convex minimization
2018
International audience; In a Hilbert space setting, the authors recently introduced a general class of relaxed inertial proximal algorithms that aim to solve monotone inclusions. In this paper, we specialize this study in the case of non-smooth convex minimization problems. We obtain convergence rates for values which have similarities with the results based on the Nesterov accelerated gradient method. The joint adjustment of inertia, relaxation and proximal terms plays a central role. In doing so, we highlight inertial proximal algorithms that converge for general monotone inclusions, and which, in the case of convex minimization, give fast convergence rates of values in the worst case.
Convergence of Measures
2020
One focus of probability theory is distributions that are the result of an interplay of a large number of random impacts. Often a useful approximation can be obtained by taking a limit of such distributions, for example, a limit where the number of impacts goes to infinity. With the Poisson distribution, we have encountered such a limit distribution that occurs as the number of very rare events when the number of possibilities goes to infinity (see Theorem 3.7). In many cases, it is necessary to rescale the original distributions in order to capture the behavior of the essential fluctuations, e.g., in the central limit theorem. While these theorems work with real random variables, we will a…
Weak convergence to the coalescent in neutral population models
1999
For a large class of neutral population models the asymptotics of the ancestral structure of a sample of n individuals (or genes) is studied, if the total population size becomes large. Under certain conditions and under a well-known time-scaling, which can be expressed in terms of the coalescence probabilities, weak convergence in D E ([0,∞)) to the coalescent holds. Further the convergence behaviour of the jump chain of the ancestral process is studied. The results are used to approximate probabilities which are of certain interest in applications, for example hitting probabilities.
Topological Dual Systems for Spaces of Vector Measure p-Integrable Functions
2016
[EN] We show a Dvoretzky-Rogers type theorem for the adapted version of the q-summing operators to the topology of the convergence of the vector valued integrals on Banach function spaces. In the pursuit of this objective we prove that the mere summability of the identity map does not guarantee that the space has to be finite dimensional, contrary to the classical case. Some local compactness assumptions on the unit balls are required. Our results open the door to new convergence theorems and tools regarding summability of series of integrable functions and approximation in function spaces, since we may find infinite dimensional spaces in which convergence of the integrals, our vector value…
The Random-Time Binomial Model
1999
In this paper we study Binomial Models with random time steps. We explain, how calculating values for European and American Call and Put options is straightforward for the Random-Time Binomial Model. We present the conditions to ensure weak-convergence to the Black-Scholes setup and convergence of the values for European and American put options. Differently to the CRR-model the convergence behaviour is extremely smooth in our model. By using extrapolation we therefore achieve order of convergence two. This way it is an efficient tool for pricing purposes in the Black-Scholes setup, since the CRR model and its extrapolations typically achieve order one. Moreover our model allows in a straig…
Convergence for varying measures in the topological case
2023
In this paper convergence theorems for sequences of scalar, vector and multivalued Pettis integrable functions on a topological measure space are proved for varying measures vaguely convergent.
An extended continuous mapping theorem for outer almost sure weak convergence
2019
International audience; We prove an extended continuous mapping theorem for outer almost sure weak convergence in a metric space, a notion that is used in bootstrap empirical processes theory. Then we make use of those results to establish the consistency of several bootstrap procedures in empirical likelihood theory for functional parameters.
Forward and backward diffusion approximations for haploid exchangeable population models
2001
Abstract The class of haploid population models with non-overlapping generations and fixed population size N is considered such that the family sizes ν1,…,νN within a generation are exchangeable random variables. A criterion for weak convergence in the Skorohod sense is established for a properly time- and space-scaled process counting the number of descendants forward in time. The generator A of the limit process X is constructed using the joint moments of the offspring variables ν1,…,νN. In particular, the Wright–Fisher diffusion with generator Af(x)= 1 2 x(1−x)f″(x) appears in the limit as the population size N tends to infinity if and only if the condition lim N→∞ E((ν 1 −1) 3 )/(N Var …
Circular law for sparse random regular digraphs
2020
Fix a constant $C\geq 1$ and let $d=d(n)$ satisfy $d\leq \ln^{C} n$ for every large integer $n$. Denote by $A_n$ the adjacency matrix of a uniform random directed $d$-regular graph on $n$ vertices. We show that, as long as $d\to\infty$ with $n$, the empirical spectral distribution of appropriately rescaled matrix $A_n$ converges weakly in probability to the circular law. This result, together with an earlier work of Cook, completely settles the problem of weak convergence of the empirical distribution in directed $d$-regular setting with the degree tending to infinity. As a crucial element of our proof, we develop a technique of bounding intermediate singular values of $A_n$ based on studyi…